
Version: 1 Y. 2019
Rev. 1

Project: Object Grasping

Cognitive Robotic Project:

Object grasping

Members

Di Prisco Giovanni

Allegretti Giovanni

Schettini Marco

Scaldaferri Antonello

Summary Pag.

Project: Object Grasping

2

Summary

1. Project Requirements .. 3

1.1 Niryo One .. 3

1.2 Nvidia Jetson Nano .. 3

1.3 Intel Real Sense Depth Camera .. 4

2. Aim of the project .. 5

3. Design ... 6

3.1 Hardware architecture ... 6

3.2 Software architecture .. 6

3.2.1 About Network choice .. 6

3.2.2 Node design .. 7

4. Implementation .. 8

4.1 Vision .. 8

4.1.1 Acquiring dataset ... 8

4.1.2 Detector Details ... 8

4.1.3 Fine-Tuning ... 9

4.1.4 Network Output .. 10

4.1.5 Vision chain ... 10

4.2 Engine .. 11

4.2.1 Perception ... 11

Figure 6: Engine flowchart ... 12

4.2.2 Reasoning ... 13

4.2.3 React .. 13

Figure 9: Showing error correction ... 14

4.3 Debug .. 15

5. Evaluations ... 16

5.1 Network evaluation .. 16

https://studentiunisait-my.sharepoint.com/personal/g_allegretti_studenti_unisa_it/Documents/Project%20Cognitive%20Robotic.docx#_Toc13565888
https://studentiunisait-my.sharepoint.com/personal/g_allegretti_studenti_unisa_it/Documents/Project%20Cognitive%20Robotic.docx#_Toc13565891

Chapter One Project Requirements Pag.

Project: Object Grasping

3

1. Project Requirements

About used hardware.

1.1 Niryo One

Niryo One is a 6-axis robotic arm. That means 6 degrees of freedom for the robot.

As showed in figure 1, the robot can be broken down into 7 parts.

There are 3 software layers when you use Niryo One. From higher to lower:

• Niryo One Studio (desktop app)

• Niryo One Raspberry Pi image (robot software) which contains the ROS stack

• Niryo Stepper (motors firmware)

1.2 Nvidia Jetson Nano

NVIDIA® Jetson Nano™ is a small, powerful computer that lets you run multiple neural
networks in parallel for applications like image classification, object detection, segmentation,
and speech processing. All in an easy-to-use platform that runs in as little as 5 watts.

1 - Base Orange

2 - Shoulder Yellow

3 - Arm Green

4 - Elbow Turquoise

5 - Forearm Blue

6 - Wrist Purple

7 - Hand Red

GPU Maxwell 128 NVIDIA CUDA® cores

CPU Quad-core ARM® Cortex®-A57

Memory 4 GB 64-bit LPDDR4

Storage 16 GB eMMC 5.1 Flash

Video Encode 4K @ 30 (H.264/H.265)

Video Decode 4K @ 60 (H.264/H.265)

Figure 2: Niryo One Robot Figure 1: Niryo One composition.

Figure 3: Nvidia Jetson Nano

Chapter One Project Requirements Pag.

Project: Object Grasping

4

1.3 Intel Real Sense Depth Camera

The Intel® RealSense™ D435 offers the widest field of view of all our cameras, along with a global

shutter on the depth sensor that is ideal for fast moving applications.

The Intel® RealSense™ depth camera D435 is a stereo tracking solution, offering quality depth for a

variety of applications. It's wide field of view is perfect for applications such as robotics or

augmented and virtual reality, where seeing as much of the scene as possible is vitally important.

With a range up to 10m, this small form factor camera can be integrated into any solution with ease

and comes complete with our Intel RealSense SDK 2.0 and cross-platform support.

Figure 4: Intel® RealSense™ D435

Chapter Two Aim of the project Pag.

Project: Object Grasping

5

2. Aim of the project
The purpose of the project is to develop an autonomous system which detect and recognize the
highest number of different coloured balls inside a controlled environment. Moreover, in a given
time interval, the robot has to grasp every ball that was recognized and put it into the correspondent
coloured box.

The equipment:

– N balls (having 4 different colours).

– 4 boxes (having 4 different colours, the same of the balls).

Chapter Three Design Pag.

Project: Object Grasping

6

3. Design
In this chapter has been described the hardware and software choices made to reach the goal of

the project. About Hardware architecture, we have to describe where locate the camera and how

we have made little structural changes on the robot in order to accommodate some constrains that

we are going to discuss. On the other hands, the developed functions must integrate with the ROS

modules of the framework seamlessly, thus requiring a careful architectural software design.

3.1 Hardware architecture

We decide to use only one Real Sense to reach the goal. The camera is positioned on the 5th joint, in this way

we get more precision in a short range giving up the speed obtainable by having a zenithal camera. Since the

RealSense has a lower limit on the depth calculation of about 15 cm, an extension has been added to the end

effector in order to be able to see at any time.

3.2 Software architecture

The first constraint refers to the ROS framework, it was used because the hardware requires

different control point, both Niryo and Jetson are equipped with ROS that come useful when we

have to exchange information across different platform end-point. In this way, we can choice where

we want to develop and ‘silently’ debug.

To fulfil the task, we have to carefully choice the network and we must develop various inter-

dependent modules that will then be integrated into the final system.

3.2.1 About Network choice

To detect and classify the balls and boxes, it was decided to use a deep neural network based

detector and classifier. This is because, today, there are numerous state-of-the-art detectors, which

can be easily used in their own applications, such as detectors of customized objects, simply by fine-

tuning the network.

An alternative to this solution could have been the separate use of a detector of generic objects,

like, for example, the Viola & Jones algorithm and the subsequent use of a downstream classifier,

which, taken as input the generic object detected by the upstream detector, performs the

classification of this object in a predefined number of classes, using, for example, classifiers such as

Support Vector Classifier, K-Nearest Neighbour, or a clustering algorithm such as K-means.

Chapter Three Design Pag.

Project: Object Grasping

7

Instead, it was decided to use a state-of-the-art single shot detector based on deep neural network,

because, as mentioned before, we wanted to reuse what was already present in the literature and

focus on the system-integration process.

In particular, given its high efficiency on mobile devices, it was decided to use MobileNetSSDv2,

which is a detector based on deep neural network, that uses the Single-Shot-Detection methodology

for the detection of objects of interest. This network allows for a good compromise between

performance and speed.

3.2.2 Node design

Chapter Four Macroscopic Scenario Pag.

Project: Object Grasping

8

4. Implementation

4.1 Vision

4.1.1 Acquiring dataset

To use the detector to detect objects of our interest (balls and boxes of 4 different colours), the

network was fine-tuned on a data set we collected.

The data set was collected by capturing images directly using the Real Sense camera, since the video

stream will be acquired through the same device during the competition.

The dataset that was acquired is composed of 504 images, of which 441 were used as training set

during the fine-tuning process and the other 63 as validation set (approximately 10% of the acquired

images). In this data set there are 2304 objects, of which 2062 in the training set and the remaining

242 in the validation set. In particular, there are a total of:

• 520 red balls

• 470 blue balls

• 377 green balls

• 600 white balls

• 90 red boxes

• 79 blue boxes

• 88 green boxes

• 80 white boxes

4.1.2 Detector Details

Since the object detector used is MobileNetSSDv2, this means that the backbone used as feature-

extractor is the deep neural network based classifier MobileNetv2. The power of this objects

detector is that the same features extracted to perform the classification are also used to perform

the detection of the objects in the image. Below is the list of the various layers that make up this

feature-extractor:

Chapter Three Design Pag.

Project: Object Grasping

9

About the Single-Shot-Detection technique, the image is divided into a grid with a certain number

of cells, on each cell different portions of the image are considered, at different scales and with

different aspect-ratio. Below is an example architecture of deep neural network based detector,

which use the Single-Shot-Detection technique:

4.1.3 Fine-Tuning

The fine-tuning of this deep neural network was performed using the Object Detection API of

Python's TensorFlow framework. In particular, the training was performed on 9000 iterations and a

batch size of 24. So, each epoch is composed of 504/24 iterations = 21 iterations, for a total of

9000/21 ≅ 429 epochs, with a constant learning rate equal to 0.004. Moreover, during the training

a random cropping operation was performed for data augmentation.

Chapter Three Design Pag.

Project: Object Grasping

10

In this particular case, of the performed fine-tuning, 6 different grid layers were used for which to

create the anchors, with a scale factor for the anchors ranging from 0.2 (which corresponds to the

finest resolution) to 0.95 (which corresponds to the coarsest resolution). In addition, the following

5 different aspect ratios were used for each cell: 1:1, 2:1, 3:1, 1:2, 1:3.

Finally, the network takes images at 300x300 pixels resolution, then an image resize operation is

previously performed, to bring the image back to the desired resolution, inserting a uniform

background for images with an aspect ratio different from 1.

4.1.4 Network Output

This network, for each input image, outputs a tensor containing 4 elements:

• The first element indicates the number of objects detected in the image.

• The second element indicates, for each object detected in the image, the “objectness”

relative to the detected object (it indicates how likely it is to be an object).

• The third element indicates, for each object detected in the image, the bounding box relative

to the detected object (therefore it contains the 4 elements that will indicate the coordinates

of the Top-Left and Bottom-Right points of the bounding box).

• The fourth element indicates, for each object detected in the image, the class identifier

relative to the detected object.

4.1.5 Vision chain

The task of vision_node is to execute the chain of vision from acquisition to classification:

Acquire images -> Recognize objects -> Get relative positions of recognized objects.

First, we acquire the images streaming: coloured and depths images. The first type of image is

passed to the net in order to recognize the objects. The second type is passed to a series of function

provided by the RealSense SDK, that align the depth image with the coloured. In this way the phase

displacement is reduced and the precision with the real values increase.

Image acquisition

When the images acquisition is done, the RGB images are processed with the DNN. This part we
collect the output information of the net into an array and then we publish this information on a
topic named net_topic. At the same time, we use OpenCV library to draw the bounding boxes
calculated by the net on the passed image. This image is published on another topic called
image_topic used only to have a visual feedback.

Chapter Three Design Pag.

Project: Object Grasping

11

Image processing

Last, we calculate the cloud points from the depth images aligned to the coloureds. Before it, to

achieve the best precision by cloud points, we pre-process the depth image with a series of filters:

decimator filter, spatial and temporal filter. Thanks to this pre-processing the values calculated by

the camera are less random and the variation is on the millimetre scale. To obtain the right position

of the recognized object we extract the centroids of the bounding boxes obtained from the net and

we search the corresponding cloud points. In addition, to obtain more robust values and to avoid

minimal blockages we decide to calculate the mean values set of cloud points surrounding the

centroid. Also, this information is collected into an array and published on a topic named

cloudpoint_topic

4.2 Engine

4.2.1 Perception

On the first stages the robot has to map all the objects inside the environment.

Angular sectors

As first logic, the environment has to be divided

in different angular sector, this choice is made

depending on the fact that the camera has an

associated point of view.

when the camera covers the sector, a scan is

performed to obtain the position of any objects.

Figure 5: Top view angular sectors

Chapter Three Design Pag.

Project: Object Grasping

12

Getting object position

Once Point Cloud have been obtained, we have to get x, y, z object coordinates from Real Sense

reference system. It means that we have to rotate and translate a point from the Real Sense

reference system (relative position) to the Niryo One reference system (absolute position).

Figure 7: Niryo and Real Sense Coordinates Systems

Figure 6: Engine flowchart

Chapter Three Design Pag.

Project: Object Grasping

13

From the geometrical point of view, it can be reassumed as in Figure 6:

The absolute position of the object (ball/box) is: 𝒑𝟎 = 𝒐𝟏
𝟎 + 𝑹𝟏

𝟎𝒑𝟏

Where:

• 𝒐𝟏
𝟎 is the camera position (end-effector

position + offset)

• 𝑹𝟏
𝟎 is rotation matrix of camera

coordinates system respect niryo one

coordinates system (in our case as

rotation angle we’ve considered the

rotation angle of the first joint along

the z axis)

• 𝒑𝟏 is the object position from camera

perspective (obtained from point cloud)

Note: before applying this transformation, we must rotate Real Sense coordinates system of 90

degrees and invert the Y axis sign in order to have aligned axes in the initial pose (0, 0, 0).

4.2.2 Reasoning

Mapping scene

To ensure robustness and cut down the presence of false positives, the observed objects are

validated if their occurrence in a fixed number of frames exceeds a threshold value.

Shortest path

To optimize the robot trajectory and reduce the times we compute the shortest path on the just

mapped scene. As shortest path we consider the sum of the Euclidean distance between ball and

box plus the Euclidean distance between ball and gripper, sorting in increaser order we obtain the

first more convenient target to grasp and deliver.

4.2.3 React

Approach

Once the object was acquired and the more convenient target was found, we have to approach to

the object target in order to grasp it. To do this task we have to go close to the target avoiding

obstacles like boxes. The position used as target has been acquired in the mapping scene stage and

it can be changed due to external factor and position error, so we use it as a raw reference to get

closer and then we go to correct the error.

Figure 8: Point representation from different coordinates systems

Chapter Three Design Pag.

Project: Object Grasping

14

Error correction:

At this point, we are close to the ball and we must have finer precision in order to correctly grip the

object. We are going to exploit vision task in order to use closed loop or other techniques which

allow us to reduce the error in terms of distance between gripper and object.

To reach this task we have to obtain the distance between gripper and ball acquiring their relative

position from depth camera’s point cloud. As you can see in figure 8 the center of the red ball

represents its corresponding value Pe of point cloud (O is the center coordinates system of Real

Sense). The same for the desired pose Pd which was acquired only once, because it remains constant

(without considering accidental shift of the camera). We can compute the distance between this

two points and adds it as increment for the actual end-effector pose.

Figure 9: Showing error correction

Chapter Three Design Pag.

Project: Object Grasping

15

4.3 Debug

The debbuger_node was created to obtain a feedback from each node. We take advantage of the
/rosout topic, an already existing topic where is published all the logs. We create a graphical
interface using PyQt5 library, in which there is one box for each node that publishes information
and there is also the image with the bounded boxes.

Chapter Five Evaluations Pag.

Project: Object Grasping

16

5. Evaluations

5.1 Network evaluation

The test was performed on a separate test set consisting of 123 images and the obtained results are

shown in the following tables:

Chapter Three Design Pag.

Project: Object Grasping

17

As you can see from the previous tables, there are many cases where objects are not detected. This

happens especially when only a very small portion of the object is present in the image, or when the

object is almost completely occluded by another object.

Another problem that can be noticed is that most of the green balls are detected as blue balls, this

results in an error during the execution of the task, as the robot will deposit the ball in the wrong

container.

This problem is caused by the fact that, contrary to what happens for the boxes, in which the 4

colours are all well distinguishable, the blue balls and the green balls inside the images, captured by

the Real Sense camera, appear of a very similar colour, almost indistinguishable even for the human

eye, this is caused by the variation of the lighting conditions in which it can be found.

To cope with this problem, it was therefore decided to use a different colour space than the classic

RGB to perform the detection and classification tasks.

In particular, the HLS, HSV, YCrCb, LUV, LAB, YUV colour spaces were examined, but what has been

found is that the best discriminations between the different colours of the balls (especially with

regard to the blue balls and the green balls) are obtained in the RGB colour space.

Furthermore, it was verified whether the removal of one or more channels from the RGB images

led to improvements. Therefore, the RG, RB, GB, R, G, B colour spaces were examined, but also in

all these cases the different colours were less discriminable than the RGB colour space.

Finally, it was verified if improvements were made with grayscale images, but even in this case the

outcome was negative. Therefore, it was decided to continue using the detector trained on the RGB

images for the execution of the detection and classification tasks.

Summary Figures Pag.

Project: Object Grasping

18

Figures

Figure 1: Niryo One composition. ... 3

Figure 2: Niryo One Robot .. 3

Figure 3: Nvidia Jetson Nano .. 3

Figure 4: Intel® RealSense™ D435 .. 4

https://studentiunisait-my.sharepoint.com/personal/g_allegretti_studenti_unisa_it/Documents/Project%20Cognitive%20Robotic.docx#_Toc13064226
https://studentiunisait-my.sharepoint.com/personal/g_allegretti_studenti_unisa_it/Documents/Project%20Cognitive%20Robotic.docx#_Toc13064227
https://studentiunisait-my.sharepoint.com/personal/g_allegretti_studenti_unisa_it/Documents/Project%20Cognitive%20Robotic.docx#_Toc13064228
https://studentiunisait-my.sharepoint.com/personal/g_allegretti_studenti_unisa_it/Documents/Project%20Cognitive%20Robotic.docx#_Toc13064229

