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Abstract
Despite the significant number of isomorphism algorithms presented in the
literature, till now no efforts have been done to characterize their different
performance in terms of matching time. It is not clear how the behavior of those
algorithms varies as the type and the size of the graphs to be matched varies in case
of real applications.
In this paper we present a benchmarking activity for characterize the performance
of a bunch of algorithms for exact isomorphism: to this purpose we use a database
of graphs specifically developed for this task.

1. Introduction
The exact graph matching problem is of interest in a variety of different pattern
recognition contexts. In fact, graphs are used to support structural descriptions as
well as for low level image representations.
As it is well known, among the different types of graph matching subgraph
isomorphism is a NP-complete problem [10], while it is still an open question if also
graph isomorphism is a NP-complete problem. As a consequence, time requirements
of brute force matching algorithms increase exponentially with the size of the input
graphs, restricting the applicability of graph based techniques to problems implying
graphs with a small number of nodes and edges.
Therefore, algorithms having time requirements suited for matching large graphs,
have been a subject of research during the last three decades.
Some of them reduce the computational complexity of the matching process by
imposing topological restrictions on the graphs. We can mention algorithms for
finding the isomorphism between planar graphs [11], trees [1] or, more generally,
bounded valence graphs [14].
An alternative approach to reducing matching complexity is that of using an
adequate representation of the searching process and pruning unprofitable paths in
the search space. In this way, no restrictions must be imposed on the structure of the
input graphs and the obtained algorithms can be generally applied.
One of the pioneer papers ascribable to this area [6], illustrates an isomorphism
algorithm which performs suitable transformations on the input graphs, in order to



find a different representation for which the matching is computationally more
convenient. However, it has been shown [15] that the conjecture on which this
method is based is not always true.
A procedure that significantly reduces the size of the search space is the
backtracking algorithm proposed by Ullmann in [21]. This algorithm is devised for
both graph isomorphism and subgraph isomorphism and is still today one of the
most commonly used for exact graph matching. This is confirmed by the fact that in
Messmer [16] it is compared with other algorithms and it results the more
convenient in terms of matching time in case of one-to-one matching.
Another backtracking algorithm is the one presented in [20] by Schmidt and Druffel.
It uses the information contained in the distance matrix representation of a graph to
establish an initial partition of the graph nodes. This distance matrix information are
then used in a backtracking procedure to reduce the search tree of possible
mappings.
A more recent algorithm, known as VF, is based on a depth-first search strategy,
with a set of rules to efficiently prune the search tree. Such rules in case of
isomorphism are shown in [5].
Another possible approach to the isomorphism problem is the one presented in [2];
instead of reducing the complexity of matching two graphs, the authors attempt to
reduce the overall computational cost when matching a sample graph against a large
set of prototypes. The method performs the matching in quadratic time with the size
of the input graph and independently on the number of prototypes. It is obviously
convenient in applications requiring the matching of a graph against a database, but
the memory required to store the pre-processed database grows exponentially with
the size of the graphs, making the method suitable only for small graphs. So one of
the authors concludes in [16] that in case of one-to-one matching other algorithms
(in particular, in [9] the Ullmann’s one is cited) are more suitable.
As regards graph isomorphism algorithms, it is also necessary to mention the
McKay's Nauty algorithm [17]. It is based on a set of transformations that lead to
reduce the graphs to be matched to a canonical form for which is very simple to test
the presence of an isomorphism. Even if Nauty is considered to be one of the fastest
graph isomorphism algorithm available, it has been shown that there are categories
of graphs for which it employs exponential time in order to find an isomorphism
[19].
All the above cited algorithms are exact ones, i.e. they find the exact solution to the
matching problem, if any. Besides them, other techniques (as those based on
non-deterministic paradigms [4, 7, 13]), able to find approximate solutions to the
matching problem have been proposed, especially in the recent past. We do not
explicitly consider them in this paper, since they are really so powerful to reduce the
complexity (in most cases) from exponential to polynomial, but, as said, they do not
guarantee finding an exact and optimal solution.
Despite the significant number of algorithms presented in the literature, till now
almost no efforts have been done to characterize their different performance in terms



of matching time. It is not clear the behavior of those algorithms as the type and the
size of the graphs to be matched varies in case of real applications.
Some preliminary work has been made in [12] as regards the comparison of inexact
graph matching algorithms for Attributed Relational Graphs. However, in this paper
the authors use a database made by graphs very limited in size (input graph size
ranged from 3 to 9 nodes) and so the obtained results cannot be considered useful
for guiding the algorithm's choice in most real applications.
As a consequence, users of graph-based approaches can only utilize qualitative
criteria to select the algorithm that seems to better fit their application constraints.
So the need of a benchmarking activity arises higher and higher in the Pattern
Recognition community, as stated in [3].
In order to made a first step towards the attempt of filling this lack, in this paper we
present a benchmarking activity for characterize the performance of a bunch of
algorithms for exact isomorphism, and to this purpose we use a database of graphs
specifically developed for this task.
The paper is organized as follows: in the next section the algorithms chosen for the
comparison are briefly presented; and in section 3 the used database is described. In
section 4 we report, for the different categories of graphs of the database the results
of the performance analysis. Finally, a discussion highlighting the behavior of the
considered algorithms is reported, and some future directions for the benchmarking
activity are drawn.

2. Algorithms for Benchmarking

This first benchmarking activity has been carried out on those exact matching
algorithms that do not impose particular restrictions on the structure of the input
graphs. This category include the Ullmann's algorithm, the algorithm of Schmidt and
Druffel (in the following referred as SD), the VF algorithm and the Nauty algorithm.
We consider two versions of the VF algorithm: the first one, referred as VF only is
based on the implementation reported in [5], while the second one, referred as VF2,
uses more effective data structures in order to optimize the matching time. Details on
this kind of implementation can be found in [8]. We explicit choose of not
considering algorithm that do not guarantee to find an exact solution, as the Corneil
and Gottlieb algorithm and all those based on non-deterministic approaches. Also
the algorithms proposed by Messmer and Bunke [16, 18] are not considered, as they
optimize the one-to-many matching problem, so resulting disadvantaged in
comparison with a generic one-to-one matching algorithm.

3. The used Database

The used database was made up of 10,000 couples of isomorphic graphs: it is part of
a wider database of synthetically generated graphs, especially developed for
benchmarking purposes, and described in details in [9].
In particular, the following kinds of graphs have been considered:



• Randomly connected graphs (3000 couples);
• Regular 2D meshes (1000 couples);
• Irregular 2D meshes (3000 couples); (see after for the meaning of irregular)
• Bounded valence graphs (3000 couples).
Each category contains couples of graphs of different size, ranging from few dozens
to about 1000 nodes (i.e., small and medium size graphs according to [3]); for each
size 100 different couples have been generated.
As regards the randomly connected graphs, three different values of the edge
density η has been considered (0.01, 0.05 and 0.1) and 1000 couples of graphs of
different size have been generated for each value of η. The density η is defined as
the probability that an edge is present between two distinct nodes n and nʹ′. The
higher the value of η, the more the graph is dense.
An irregular 2D mesh has been obtained from a regular 2D mesh by the addition of
a certain number of edges, each connecting nodes that have been randomly
determined according to an uniform distribution. The number of added edges was
ρN, where ρ is a constant greater than 0. Three values of ρ has been considered
(0.2,0.4 and 0.6) and 1000 couples of graphs of different size generated for each
value of ρ.
Finally for bounded valence graphs, three different value of the valence v has been
considered and, once again, 1000 couples of graphs of different size have been
generated for each value of v.

4. Experimental Results

All the considered algorithms were implemented in C++ and run on a Intel Celeron
500 Mhz PC, equipped with 128 MB of RAM. In particular we have implemented
both the Ullmann and the SD algorithm on the basis of the papers [21] and [20]
respectively. Their source code can be found at the Web site
http://amalfi.dis.unina.it/graph together with the two version of the VF algorithm,
namely VF and VF2. As regards the Nauty algorithm, we used the version 2.0b9
made available by B.D. McKay at the URL: http://cs.anu.edu.au/~bdm/nauty/
In the following of the Section the plots giving the matching times as a function of
the input graphs size are shown for the five considered algorithms. Times are always
reported in seconds in a logarithmic scale
Before presenting them, it is worth noting that some curves do not report the
matching time obtained in correspondence with a given size. It happens when the
algorithm was not able to find a solution to the isomorphism problem in a time less
than half an hour.

4.1 Randomly Connected Graphs

Fig.1 shows the matching time of the five selected algorithms with reference to the
randomly connected graphs. In particular Fig 1a, 1b and 1c respectively refers to
values of η  equal to 0.01, 0.5 and 0.1.



Randomly Connected Graphs - η=0.01
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Randomly Connected Graphs - η=0.05
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Randomly Connected Graphs - η=0.1
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Fig. 1: The performance of the five algorithms on Randomly Connected Graphs, as a
function of the graph size and for different values of η: (a) η= 0.01, (b) η= 0.05, (c) η= 0.1
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It can be noted that the two version of VF and the algorithm of Nauty performs
always better with respect to SD and Ullmann.
Moreover, VF2 performs always better than VF, while Ullmann is better than SD if
the size of the graphs is smaller than 700. After this size, in fact, the Ullmann
algorithm is not able to find any isomorphism.
In conclusions, the VF2 algorithm obtain the best performance for graphs of small
size and for quite sparse graphs, while for dense graphs the Nauty algorithm obtains
the best results.

4.2 2D Meshes

In Fig.2 the performance of the five algorithms on 2D regular meshes are shown.
Regular 2D Meshes
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Fig. 2: The performance of the five algorithms on Regular 2D Meshes as a function of the
graph size.

In this case, as the size of the graphs grows up to one hundred nodes, i.e. for graphs
of medium size, both Nauty and Ullmann are not able to find solutions. For any
input graph size, the VF2 algorithm is the best one. Moreover, note that the
algorithm VF always performs better than SD.
Fig.3 reports the performance of all the algorithms on irregular 2D meshes. In
particular, in Fig 3a 2D Meshes with ρ= 0.2 are considered, while in fig. 1b and 1c
the considered values of ρ are 0.4 and 0.6 respectively.
The main difference with the case of regular meshes is that the Nauty algorithm is
now always able to find a solution, but it still performs worse than VF2. However its
behavior is better than those of VF and SD
Moreover, the maximum graph size for which the Ullmann algorithm is still able to
find a solution grows proportionally to the irregularity of the graphs. For a value of
ρ equal to 0.6, Ullmann can solve the isomorphism problem for graphs with size up
to 500 nodes. If it finds a solution the matching time is always better than the one
obtained by SD.



Irregular 2D Meshes - ρ = 0.2
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Irregular 2D Meshes - ρ = 0.4
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Irregular 2D Meshes - ρ = 0.6
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Fig. 3: The performance of the algorithms on Irregular 2D Meshes as a function of the graph
size and for different values of ρ: (a) ρ= 0.2,(b) ρ= 0.4 (c) ρ= 0.6.

(a)

(b)

(c)



Bounded Valence Graphs - 3-valent
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Bounded Valence Graphs - 6-valent
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Bounded Valence Graphs - 9-valent
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Fig. 4: The performance of the algorithms on Bounded Valence Graphs as a function of the
graph size and for different values of the valence v: (a) v = 3, (b) v = 6, (c) v = 9.
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4.3 Bounded Valence Graphs

Finally, in Fig.4 the performance of the algorithms on bounded valence graphs are
shown. In this case the considered values of the valence v are 3, 6 and 9, as reported
in Fig. 4a, 4b and 4c respectively.
Also in this case the Ullmann algorithm is not always able to find a solution; if it
happens, however, its matching time is smaller than the one of SD and higher than
those obtained by the other three algorithms. SD performs always worse than VF,
VF2 and Nauty, while VF is always worse than VF2.
As regards the comparison between VF2 and Nauty, the first algorithm performs
always better for a value of v equal to 3 (in this case, for quite large graphs, VF also
is better than Nauty), while for higher values of v the matching times obtained by
Nauty for quite small graph are smaller than those obtained by VF2. Anyway,
independently of the considered value of v, as the number of the nodes of the input
graphs is bigger than 600, VF2 is the best algorithm.

5. Discussion and conclusions

In this paper we have presented a preliminary benchmarking activity for assessing
the performance of some widely used exact graph matching algorithms. The
comparison has been carried out on a database of artificially generated graph.
As it could be expected, it does not exist an algorithm that is definitively better than
all the others.
In particular, for randomly connected graphs, the Nauty algorithm is the better if the
graphs are quite dense and/or of quite large size. For smaller and quite sparse
graphs, on the contrary, VF2 performs better.
On more regular graphs, i.e. on 2D meshes, VF2 is definitely the best algorithm: in
this case the Nauty algorithm is even not able to find a solution for graphs bigger
than few dozens of nodes.
In case of bounded valence graph, if the valence is small, VF2 is always the best
algorithm, while for bigger values of the valence the Nauty algorithm is more
convenient if the size of the graphs is small.
Finally, it is also worth noting that SD, VF and VF2 are the only algorithms that
have always been able to find a solution to the isomorphism problem in our tests,
independently of the size and the kind of the graphs to be matched.
Future steps of this benchmarking activity will involve the comparison of other
categories of graph matching algorithms, and the extension to other kind of matching
problems, as the monomorphism and the graph-subgraph isomorphism.
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