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Abstract

Despite of the fact that graph-based methods are gaining more and more popularity in different scientific areas, it has
to be considered that the choice of an appropriate algorithm for a given application is still the most crucial task.

The lack of a large database of graphs makes the task of comparing the performance of different graph matching
algorithms difficult, and often the selection of an algorithm is made on the basis of a few experimental results available.

In this paper we present an experimental comparative evaluation of the performance of four graph matching al-
gorithms. In order to perform this comparison, we have built and made available a large database of graphs, which is
also described in detail in this article.
! 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Graphs are widely used in several areas for
representing many different kinds of information:
syntactic structures of a language, chemical com-
pounds, geographic maps, computer networks,
software systems architectures, database struc-
tures, complex objects or scenes found in static or
motion pictures are just a few examples of what
has been described using graphs (Rouvray and

Balaban, 1979; Wong, 1992; Shearer et al., 1998;
Abdulrahim and Misra, 1998).

Many of these applications require some kind
of comparison between graphs, which can be for-
mulated as a graph matching problem. In parti-
cular, in several important cases, the application
entails the search for graph isomorphism or for
graph–sub-graph isomorphism. In the last three
decades, plenty of algorithms for this problem,
using either optimal or approximate methods,
have been proposed with the specific aim of re-
ducing computational complexity of the matching
process. Far from giving an exhaustive list, some
widely known algorithms are described in (Hop-
croft and Wong, 1974; Luks, 1982; Ullmann, 1976;
Bunke and Messmer, 1995; Cordella et al., 1999).
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Although the authors of each novel algorithm
usually provide experimental results supporting
the claim that their method can outperform the
previous ones at least under some circumstances, it
is almost always very difficult for a user to choose
the algorithm which is best suited for dealing with
the problem at hand. In fact, a report of the al-
gorithm performance on a specific test case can
often provide no useful clues about what will
happen in a different domain.

Unfortunately, only a few papers face the
problem of making an extensive comparison of
graph matching algorithms in terms of key per-
formance indices (memory and time requirements,
maximum graph size, etc.) (Bunke and Vento,
1999). So, it seems that the habit of proposing
more and more new algorithms is prevailing
against the need of assessing the performance of
the existing ones in an objective way. As a con-
sequence, the users of graph-based approaches can
only use qualitative criteria to select the algorithm
that seems to better fit with the application con-
straints.

As the popularity of graphs as a representation
tool grows also for complex problems requiring
hundreds or even thousands of nodes, it becomes
more and more important for building robust and
effective systems that we are able to choose the
most appropriate algorithms to be used as building
blocks. Hence, some effort must be put in the task
of comparing graph matching algorithms.

If we try to understand the reasons why up to
now no serious attempt has been made for com-
paring graph matching algorithms, we can easily
recognize that one of the main difficulties is the
lack of standard databases of graphs specifically
designed for this purpose. In other research fields
(for example, OCR), the availability of large de-
facto standard databases improves the verifiability
and the comparability of the experimental results
of each method; why this cannot be done also for
graph matching?

A possible answer is that the creation of a graph
database is definitely not a simple task, since sev-
eral issues have to be faced. The first question is:
should the graphs be collected from real-world
applications or should they be generated according
to some probabilistic model? The latter choice,

besides being simpler to implement, permits a finer
control over the features of the graphs; but then
which model(s) will faithfully reflect the perfor-
mance obtainable in a given real application?
Further questions: how large should the graphs
be? How dense? How many graphs should be
comprised in the database to make it statistically
representative? Should semantic attributes be at-
tached to nodes and edges, and if so, how should
those attributes be obtained?

Since these problems have no simple answer on
which the majority of the research community can
agree, it is unreasonable that a single comprehen-
sive database can be built which will satisfy all the
needs of everyone. Nevertheless, it is our opinion
that it is important to start building and sharing
graph data sets, to provide a common ground
for comparing the algorithms’ performance. A
database which lacks some property desirable for
some class of users is better than no database at
all.

Even after settling the question of the database,
some other issues remain open. In order to provide
a fair comparison, it should be taken into account
that algorithms often are optimized for different
usage patterns. Inexact graph matching algorithms
are more robust, but also considerably slower than
exact matching algorithms. Suboptimal algorithms
can be quite faster, but may fail in finding a solu-
tion even if it exists. Some kinds of algorithms can
be quite slow when matching two graphs, but show
a considerable speed-up when matching one graph
against a large set of prototypes. Other algorithms
can be impressive on small graphs, but, due to a
significant memory usage, can result definitely
inapplicable to larger ones. As a consequence, a
comparison is meaningful only if the algorithms
being compared have similar characteristics; oth-
erwise little or no useful information can be
gained.

In this paper we present an experimental com-
parison of four exact graph matching algorithms.
In order to perform this benchmarking activity, we
have built and made available to the public do-
main a large database of graphs.

In the rest of the paper, we will describe in more
detail the composition of the database. Then we
will provide an overview of graph matching algo-
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rithms, followed by some more information about
the algorithms used for this comparison and the
reasons behind their choice. Finally, the obtained
performance of the algorithms on the database will
be presented and discussed.

2. The database

In general, two approaches can be followed for
generating a database; a first way is to start from
graphs obtained from real data, otherwise the
database can be obtained synthetically. Although
the first approach allows us to obtain rather real-
istic graphs, it is generally more expensive as it
requires the collection of real data and the selec-
tion of the set of algorithms to be used for ob-
taining graphs from data. In this case the graphs
are dependent on both the domain under consider-
ation and the pre-processing algorithm used, re-
ducing significantly the generality of the database
and its reusability in other contexts. On the con-
trary, the artificial generation of graphs is not only
simpler and faster than collecting graphs from real
applications, but also allows us to control the
variation of several critical parameters of the
underlying graph population, such as the average
number of nodes, average number of edges per
node, number of different labels, and so on.
Starting from these considerations, we decided to
generate the database synthetically, so obtaining a
quite large database of graphs, that can be also
easily expandable, in a relatively short time.

The choice of the kind of graphs to be in-
cluded in the database started with an analysis
of the graphs mainly used by members of the
IAPR-TC15 community (see http://www.iapr-tc15.
unisa.it); a classification of various kinds of graphs
used within the pattern recognition field has been
recently proposed in (Bunke and Vento, 1999).
The database is structured in pairs of graphs. Two
categories of pairs of graphs have been introduced.
Pairs made of isomorphic graphs and pairs made
of graphs in which the second graph is a sub-graph
of the first one. A total of 72,800 pairs of graphs
have been generated: 18,200 pairs of isomorphic
graphs and 54,600 pairs for which a sub-graph
isomorphism exists. Each category of pairs is made

up of graphs that are different for structure and
size. In particular, the following kinds of graphs
have been considered:

• Randomly connected graphs;
• Regular meshes, with different dimensionality:
2D, 3D and 4D;

• Irregular meshes;
• Bounded valence graphs;
• Irregular bounded valence graphs.

Each kind of graphs has pairs of different size,
ranging from few dozens to about 1000 nodes (i.e.
small and medium size graphs according to the
classification presented in (Bunke and Vento,
1999)). For each size and kind of graphs 100 dif-
ferent pairs have been generated.

A brief description of the properties of each
kind of graph and of the motivation inspiring the
choice of including them in the database is given in
Section 2.1, together with the number of generated
isomorphic pairs per kind.

In case of graph sub-graph isomorphism we
have generated pairs in which the two graphs
(satisfying the graph–sub-graph condition) have
three different size ratios, namely 0.2, 0.4 and 0.6.
So, each kind of graphs contains a number of pairs
three times higher than that obtained in case of the
isomorphism.

The graphs composing the whole database have
been distributed on a CD during the 3rd IAPR-
TC15 Workshop on Graph-based Representa-
tions in Pattern Recognition (GbR2001) and are
also publicly available on the web at the http://
amalfi.dis.unina.it/graph.

Graphs are stored in a binary format. Each
graph is contained in a file, and the files are
grouped into directories according to the kind of
graphs and to the value of the parameters used in
the generation.

Each graph file is composed by a sequence of
16-bit words; the words are encoded in little-en-
dian format (e.g. LSB first). The first word repre-
sents the number of nodes in the graph. Then, for
each node, there is a word encoding the number of
edges coming out of that node, followed by a se-
quence of words encoding the endpoints of those
edges.
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In addition to the graphs, we have also made
available the sources of the programs used for
their generation, which are coded in C++. For the
generation of the whole database, a Unix shell
script has been written. The database has been
generated on a computer with a 350 MHz Pentium
III processor and 128 MB of RAM. The under-
lying operating system was Linux 2.2.14, and the
C++ compiler was egcs release 1.1.2. The total
time required by the generation has been of about
7 h, and the overall size of the compressed archive
is about 420 MB. The database is completed with a
simplified ground truth; for each pair of graphs
(both in the case of isomorphism and/or sub-graph
isomorphism) the number of existing solutions is
reported. This information has been obtained by
using the graph matching algorithms described in
Section 3.

2.1. Kind of graphs

Randomly connected graphs are graphs in which
the edges connect nodes without any struc-
tural regularity. They have been introduced for
simulating applications in which the entities (rep-
resented by nodes) can establish relations (repre-
sented by edges) with any other entity (not only
the surrounding ones) independently of the rela-
tive positions. This hypothesis typically occurs in
the middle and high processing levels of a com-
puter vision task.

It is assumed that the probability of an edge
connecting 2 nodes of the graph is independent on
the nodes themselves. The same model proposed in
(Ullmann, 1976) has been adopted for generating
these graphs: it fixes the value g of the probability
that an edge is present between two distinct nodes
n and n0. The probability distribution is assumed to
be uniform.

According to the meaning of g, if N is the total
number of nodes of the graph, the number of its
edges will be equal to gNðN " 1Þ. However, if this
number is not sufficient to obtain a connected
graph, further edges are suitably added until the
graph being generated becomes connected.

Three different values of the edge density g has
been considered (0.01, 0.05 and 0.1) and 1000 pairs
of isomorphic graphs of different size, ranging

from 20 to 1000 have been generated for each
value of g.

Regular meshes are introduced for simulating
applications dealing with regular structures as
those operating at the lower levels of a vision task.
Furthermore, it is generally agreed that graphs
having a regular structure represent a worst case
for general graph matching algorithms (i.e. algo-
rithms working on any kind of graphs) (Ullmann,
1976). This problem determined the born of spe-
cialized graph matching methods, with kind of
algorithms able to efficiently perform the matching
for given graph structures. So the database in-
cludes, as regular graphs, the mesh connected
graphs (2D, 3D and 4D).

The considered 2D mesh are graphs in which
each node (except those belonging to the border of
the mesh) is connected with its 4 neighborhood
nodes. Similarly, each node of a 3D and 4D graph
has respectively connections with its 6 and 8
neighborhood nodes. In all cases the meshes are
open, i.e. the border nodes are connected only with
internal nodes.

In particular, 1000 pairs of isomorphic 2D
meshes with size ranging from 16 to 1024 nodes
have been generated, as well as 800 pairs of 3D
meshes (with size ranging from 27 to 1000 nodes)
and 500 pairs of 4D meshes (with size ranging
from 16 to 1296 nodes).

Irregular mesh-connected graphs have been in-
troduced for simulating the behavior of the algo-
rithms in presence of slightly distorted meshes.

They have been obtained from regular 2D me-
shes by the addition of a certain number of edges.
Each added edge connects nodes that have been
randomly determined according to a uniform dis-
tribution. The number of added branches is qN ,
where q is a constant greater than 0. Note that, the
closer q to 0 is, the more symmetric the graphs are.

Three values of q has been considered (0.2, 0.4
and 0.6) and 1000 pairs of 2D meshes of different
size have been generated for each value of q, as
well as 800 pairs of 3D meshes and 500 pairs of 4D
meshes, giving rise to a total of 6900 pairs of iso-
morphic graphs.

Bounded valence graphs model those applica-
tions in which each object (i.e. a node) establish
a fixed number of relations (edges) with other
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objects, not necessarily with those belonging to its
neighborhood. They are graphs in which every
node has a number of edges (among ongoing and
outgoing) lower than a given threshold, called
valence. A particular case occurs when the number
of edges is equal for all the nodes; in this case the
graph is commonly called fixed valence graph.

The database includes graphs with a fixed va-
lence, that have been generated by inserting ran-
dom edges (using an uniform distribution) with the
constraint that the valence of a node cannot exceed
a selected value; edge insertion continues until all
the nodes reach the desired valence. It is worth
noting that it is impossible to have fixed valence
graphs with an odd number of nodes and an odd
valence, but in our database we have only con-
sidered graphs with an even number of nodes.

Three different values of the valence v ð3;
6 and 9Þ have been considered and 1000 pairs of
graphs of different size have been generated for
each value of v. Again, sizes ranging from 20 to
1000 nodes have been considered.

In order to introduce some irregularities in the
bounded valence graphs, we have considered also
the Irregular bounded valence graphs. For such
graphs, the average valence of the nodes (that is,
the ratio between the number of edges and the
number of nodes) is still bounded, but the single
nodes may have a valence which is quite different
from the average, and which is not bounded by
a constant value. To this aim, first a fixed valence
graph is generated. Then, a certain number of
edges are moved from the nodes they are attached
to, to other nodes. The number of movements is
equal to M ¼ 0:1NV , where V is the valence. This
is equivalent to say that 10% of all the edges are
moved.

The edges to be moved are chosen according to
a random distribution with uniform probability.
However, the new endpoints to which these edges
are connected are not chosen uniformly, since this
choice would affect only very slightly the overall
variance of the valence of the nodes. Instead, after
a random permutation of the nodes, the moved
edges are distributed among the nodes using a
probability distribution in which the node whose
index is i has a probability of receiving an edge
evaluated as a expð"biÞ where a and b depend on

the number N of nodes, and satisfy the follow-
ing constraints: (i) the sum of the probabilities of
the nodes of the graph is equal to 1 and (ii) the
probability of the node i multiplied by the number
of edges to be moved is equal to 0:5

p
N . Using this

distribution the maximum valence of the resulting
graph will not be independent of N, and so special-
purpose algorithms for bounded valence graphs
cannot be employed, even though the graph is
isomorphic for 90% of its edges to a fixed valence
graph.

As in case of bounded valence graphs, three
values of v ð3; 6 and 9Þ have been considered and
1000 pairs of graphs of different size (from 20 to
1000 nodes) have been generated for each value
of v.

3. A brief review of algorithms for graph isomor-
phism

During the last decades significant research
efforts have been devoted to improve performance
of the graph matching algorithms, in terms of both
computational time and memory requirements.

Some algorithms reduce the computational
complexity of the matching process by imposing
topological restrictions on the graphs (Hopcroft
and Wong, 1974; Luks, 1982; Jiang and Bunke,
1996). An alternative approach is that of using an
adequate representation of the searching process
and pruning unprofitable paths in the search
space. In this way, no restrictions must be imposed
on the structure of the input graphs and the ob-
tained algorithms can be applied in more general
cases.

A procedure that significantly reduces the size
of the search space is the backtracking algorithm
proposed by Ullmann (1976). This algorithm
is devised for both graph isomorphism and sub-
graph isomorphism and is still today one of the
most commonly used for exact graph matching.
This is confirmed by the fact that in (Messmer,
1996) it is compared with other algorithms and it
results the more convenient in terms of matching
time in case of one-to-one matching.

Another backtracking algorithm is the one
presented by Schmidt and Druffel (1976). It uses
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the information contained in the distance matrix
representation of a graph to reduce the search tree
of possible mappings.

A more recent algorithm, known as VF, is
based on a depth-first search strategy, with a set of
rules to efficiently prune the search tree. Such rules
in case of isomorphism are shown in (Cordella
et al., 1998). An improved version, referred to as
VF2, is based on the same rationale, but stores the
information of the state space search in more ef-
fective data structures, so as to significantly reduce
the matching time and the memory requirements.
Details on these aspects are given in (Cordella
et al., 2001).

As regards the graph isomorphism problem, it
is also necessary to mention the McKay’s Nauty
algorithm (McKay, 1981). It is based on a set of
transformations that reduce the graphs to be
matched to a canonical form on which the test-
ing of the isomorphism is significantly faster. Even
if Nauty is considered one of the fastest graph
isomorphism algorithms today available, it has
been shown that there are categories of graphs for
which it requires exponential time (Miyazaki,
1997).

Another possible approach to the isomorphism
problem is the one presented in (Bunke and
Messmer, 1995); instead of reducing the com-
plexity of matching two graphs, the authors at-
tempt to reduce the overall computational cost
when matching a sample graph against a large set
of prototypes. The method performs the matching
in quadratic time with the size of the input graph
and independently on the number of prototypes. It
is obviously convenient in applications requiring
the matching of a graph against a database, but
the memory required to store the pre-processed
database grows exponentially with the size of the
graphs, making the method suitable only for small
graphs. So one of the authors concludes in (Mess-
mer, 1996) that in case of one-to-one match-
ing other algorithms (in particular, in (Messmer,
1996) the Ullmann’s one is cited) are more suit-
able.

All the above-cited algorithms are exact ones;
i.e. they find the exact solution to the matching
problem, if any. Besides them, other techniques
(as those based on non-deterministic paradigms:

Christmas et al., 1995; De Jong and Spears, 1989),
able to find approximate solutions to the matching
problem have been proposed, especially in the re-
cent past. We do not explicitly consider them in
this paper, since they are really so powerful to
reduce the complexity (in most cases) from expo-
nential to polynomial, but, as said, they do not
guarantee finding an exact and optimal solution.

4. Experimental results

The algorithms we have chosen for our experi-
mentation are the Ullmann’s algorithm, the algo-
rithm by Schmidt and Druffel (in the following
referred to as SD), the VF2 algorithm and Nauty.

These algorithms possess several common
characteristics. They are exact isomorphism algo-
rithms (although two of them can also be used,
with small modifications, for graph–sub-graph
isomorphism). They are always able to find the
optimal solution, if it exists. They are general, in
the sense that they do not rely on any special
property of the graphs. They are optimized for
one-to-one matching, as opposed to one-to-many
matching (as is the case for the algorithms by
Messmer and Bunke: Messmer, 1996; Messmer
and Bunke, 1999). Three of them also show some
similarity at the implementation level, being based
on a depth-first search. While the fourth algorithm
(Nauty) has a quite different implementation
structure, it has been included in the experimen-
tation because it is widely considered one of the
fastest isomorphism algorithms available today.

We used, when available, the original imple-
mentations of the algorithms and run them on
an Intel Celeron 500 MHz PC, equipped with
128 MB of RAM. So, as regards the Nauty algo-
rithm, we used the version 2.0b9 made available by
B.D. McKay at the http://cs.anu.edu.au/%bdm/
nauty. A publicly available implementation of the
Ullman’s algorithm (Ullmann, 1976) can be found
at the URL http://ftp.iam.unibe.ch/pub/Tools/
GUB_toolkit.tar.Z; anyway, we have rewritten it
in C++ with the aim of improving its efficiency.
Thus, in this paper we refer to our implementation
of the Ullman’s algorithm, available at site http://
amalfi.dis.unina.it/graph together with the VF2
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algorithm and an implementation of the SD al-
gorithm (Schmidt and Druffel, 1976).

Since not all the selected algorithms can solve
the graph sub-graph isomorphism problem, in
all tests only isomorphic pairs have been used.
Moreover, two different evaluation criteria have
been chosen. The first one measures the time
needed by each algorithm for finding a solution to
the isomorphism problem, while the second one
considers pairs of non-isomorphic graphs and
takes into account how long each algorithm needs
for finding out that the two input graphs do not
match.

In the following of the section plots giving the
times as a function of the input graphs size are
shown. Results on all the kinds of graphs present
in the database are reported, but the ones on the
3D and 4D meshes, since in these cases the be-
havior of the algorithms is very similar to that
exhibited on the 2D meshes. Note that for each
kind of graphs both matching times and the times
needed for finding out that the input graphs do not
match are shown.

Times are always reported in seconds in a log-
arithmic scale. It is worth noting that some curves
do not report the times obtained in correspon-
dence with a given size. It happens when the al-
gorithm is not able to give us a result (i.e. to find a
solution to the isomorphism problem or to rec-
ognize that the input graphs are not isomorphic) in
less than half an hour.

4.1. Randomly connected graphs

Fig. 1 shows the behavior of the four selected
algorithms with reference to the randomly con-
nected graphs. In particular, Fig. 1a–c respectively
refer to values of g equal to 0.01, 0.5 and 0.1 for
pairs of isomorphic graphs, while Fig. 1d–f refer to
the same values of g for pairs of non-isomorphic
graphs. As regards the matching times in case of
isomorphic pairs, VF2 and Nauty perform always
better with respect to SD and Ullmann. Moreover,
Ullmann is faster than SD if the size of the graphs
is smaller than 700. After this size, in fact, the
Ullmann’s algorithm is not able to find any iso-
morphism. As regards the comparison between

VF2 and Nauty, it can be noted that VF2 obtains
better performance for graphs of small size and
for quite sparse graphs, while for dense graphs
the Nauty algorithm exhibits better results. On
the contrary, in case of non-isomorphic graphs the
Ullmann’s algorithm is always the best one.
Moreover, VF2 always performs better than Na-
uty. Finally, it is worth noting that the perfor-
mance of the SD algorithm only depends on the
size of the input graphs.

4.2. 2D meshes

In Fig. 2 the performance of the algorithms on
2D regular meshes are shown. The behavior of all
algorithms is practically the same either for iso-
morphic or for non-isomorphic pairs. In both
cases, in fact, as the size of the graphs grows up to
100 nodes, i.e. for graphs of medium size, neither
Nauty nor Ullmann’s are able to find solutions.
For any input graph size, the VF2 algorithm is the
best one and its performance are significantly
better in case of non-isomorphic pairs.

Fig. 3 reports the performance on irregular 2D
meshes. In particular, in Fig. 3a–c pairs of iso-
morphic 2D meshes with values of q equal re-
spectively to 0.2, 0.4 and 0.6 are considered, while
Fig. 3d–f refer to pairs of non-isomorphic 2D
meshes with the same values of q.

For pairs of isomorphic graphs, the main dif-
ference with respect to the case of regular meshes
is that the Nauty algorithm is now always able to
find a solution, but it still performs worse than
VF2. However its behavior is better than those of
SD and Ullmann are. Moreover, the maximum
graph size for which the Ullmann’s algorithm is
still able to find a solution grows proportionally
to the irregularity of the graphs. For a value of
q equal to 0.6, Ullmann can solve the isomor-
phism problem for graphs whose size is up to
500 nodes. If it finds a solution the matching
time is always better than the one obtained by
SD.

Even for non-isomorphic graphs the Nauty al-
gorithm is always able to give a result within the
half an hour timeout, but in this case the difference
with respect to the time needed by VF2 is higher.
Also the Ullmann’s algorithm always finds out the
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correct result within the timeout, but it is charac-
terized by an oscillatory behavior. This is due to
the fact that there are very few pairs of graphs for
which the time needed to give a result is some
orders of magnitude higher than the time needed
by all the others pairs. So, it is very difficult
to predict the behavior of such an algorithm as
a function of the number of nodes and/or the
values of q. This is particularly true for small
values of q.

4.3. Bounded valence graphs

In Fig. 4 the performance of the algorithms on
bounded valence graphs are shown. In this case the
considered values of the valence v are 3, 6 and 9, as
respectively reported in Fig. 4a–c for pairs of iso-
morphic graphs and Fig. 4d–f for pairs of non-
isomorphic graphs.

In case of isomorphic pairs, the Ullmann’s al-
gorithm is not always able to find a solution; if it

Fig. 1. The performance of the algorithms on randomly connected graphs, as a function of the graph size and for different values of g:
(a,d) g ¼ 0:01, (b,e) g ¼ 0:05, (c,f) g ¼ 0:1. Left column plots refer to pairs of isomorphic graphs, while right column plots to pairs of
non-isomorphic graphs.
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Fig. 2. The performance of the algorithms on regular 2D meshes as a function of the graph size in case of pairs of isomorphic graphs
(a) and of non-isomorphic graphs (b).

Fig. 3. The performance of the algorithms irregular 2D meshes as a function of the graph size and for different values of q: (a,d)
q ¼ 0:2, (b,e) q ¼ 0:4, (c,f) q ¼ 0:6. Left column plots refer to pairs of isomorphic graphs, while right column plots to pairs of non-
isomorphic graphs.
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happens, however, its matching time is typically
smaller than the one of SD and always higher
than those obtained by the other two algorithms.
Moreover, SD performs always worse than VF2
and Nauty.

As regards the comparison between VF2 and
Nauty, the first algorithm performs always better
for a value of v equal to 3, while for higher values
of v the matching times obtained by Nauty for
quite small graph are smaller than those obtained
by VF2. Anyway, independently of the considered
value of v, as the size of the input graphs is bigger
than 600, VF2 is the best algorithm.

On the contrary, in case of non-isomorphic
graphs VF2 always performs better than Nauty.
For high values of v Ullmann again exhibits an
oscillatory behavior, but its performance is prac-
tically always worse than that of VF2. Even in this
case the performance of the SD algorithm only
depends on the size of the input graphs.

4.4. Irregular bounded valence graphs

Finally, in Fig. 5 the performance of the algo-
rithms on irregular bounded valence graphs is
shown. Also in this case the considered values of

Fig. 4. The performance of the algorithms on bounded valence graphs as a function of the graph size and for different values of the
valence m: (a,d) v ¼ 3, (b,e) v ¼ 6, (c,f) v ¼ 9. Left column plots refer to pairs of isomorphic graphs, while right column plots to pairs of
non-isomorphic graphs.
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the valence v are 3, 6 and 9, as respectively
reported in Fig. 5a–c for pairs of isomorphic
graphs and Fig. 5d–f for pairs of non-isomorphic
graphs.

In case of isomorphic graphs, VF2 is the best
algorithm for low values of v, while its perfor-
mance is practically the same of that exhibited by
Nauty for higher values of v. However, indepen-
dently on the values of v, VF2 has the best per-
formance as the size of the input graphs grows. On
the contrary, the Ullmann’s algorithm is never able

to find a solution if the size of the input graphs
becomes higher than 700.

As regards non-isomorphic graphs, both SD
and Nauty exhibit the same behavior of the iso-
morphic graph case, while VF2 gives rise to bet-
ter results, performing always significantly better
than Nauty. For all values of v, however, the
best algorithm is Ullmann, which is able to find
out the correct result in a time that is about two
orders of magnitude lower than the one needed
by VF2.

Fig. 5. The performance of the algorithms on irregular bounded valence graphs as a function of the graph size and for different values of
the valence v: (a,d) v ¼ 3, (b,e) v ¼ 6, (c,f) v ¼ 9. Left column plots refer to pairs of isomorphic graphs, while right column plots to pairs
of non-isomorphic graphs.
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5. Discussion and conclusions

In this paper we have presented a benchmark-
ing activity for assessing the performance of some
widely used exact graph matching algorithms. The
comparison has been carried out on a large dat-
abase of artificially generated graphs, which has
been built and made publicly available to provide
a common reference data set for further bench-
marking activities.

As it could be expected, it does not exist an
algorithm that is definitively better than all the
others. In particular, for randomly connected
graphs, the Nauty algorithm is the best one if the
graphs are quite dense and/or of quite large size.
For smaller and quite sparse graphs, on the con-
trary, VF2 performs better.

On more regular graphs, i.e. on 2D meshes,
VF2 is definitely the best algorithm: in this case
the Nauty algorithm is often not even able to find
a solution for graphs bigger than few dozens of
nodes. In case of bounded valence graph, if the
valence is small, VF2 is always the best algorithm,
while for bigger values of the valence the Nauty
algorithm is more convenient if the size of the
graphs is small.

If the two graphs being compared are not iso-
morphic, Ullmann’s algorithm shows a quite sin-
gular behavior: for most of the cases, it is able to
stop the search very early, requiring a time that is
considerably lower than that of the other algo-
rithms. On the other hand, in the remaining few
cases, the time needed to stop the search is ex-
tremely longer (often by several orders of magni-
tude), making the algorithm unpractical. We have
not yet been able to characterize the graphs which
trigger such a behavior, nor to provide a reason-
able estimate of their occurrence probability. It
can be noted that for these cases, the algorithm
showing the best performance is definitely VF2.
Finally, it is also worth noting that SD and VF2
are the only algorithms that have always been able
to find a solution to the isomorphism problem in
our tests, independently of the size and the kind of
the graphs to be matched.

Future steps of this benchmarking activity will
involve the comparison of other algorithms, and
the extension to other problems. We are also

planning to extend the database with other graph
categories and to add an indexing facility (based
on several graph parameters), for making its
use more easy and convenient to other research-
ers.
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