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RTOS Concepts 

This is a brief introduction to basic Real Time Operating Systems concepts.  

What is an RTOS 

An RTOS is an operating system specialized for real time operations. In order to be classifiable as an 

RTOS an operating system must:  

• Have response time predictability. 

• Be deterministic. 

Other qualities like speed, features set, small size etc, while important, are not what really 

characterize an RTOS.  

Systems Classification 

Any system can classified in one of the following categories.  

Non Real Time systems 

A non real time system is a system where there are no deadlines involved. Non-RT systems could 

be described as follow:  

”A non real time system is a system where the programmed reaction to a stimulus will certainly 

happen sometime in the future”.  

Soft Real Time systems 

A Soft real time system is a system where not meeting a deadline can have undesirable but not 

catastrophic effects, a performance degradation for example. SRTs could be described as follow:  

”A soft real time system is a system where the programmed reaction to a stimulus is almost always 

completed within a known finite time”.  

Hard Real Time systems 

An Hard Real Time (HRT) system is a system where not meeting a deadline can have catastrophic 

effects. HRT systems require a much more strict definition and could be described as follow:  

”An hard real time system is a system where the programmed reaction to a stimulus is 

guaranteed to be completed within a known finite time”.  

Considerations 

As you can see speed is not the main factor, predictability and determinism are. It is also 

important to understand that it is not the RTOS that makes a system SRT or HRT but the 

system design itself, the RTOS is just a tool that you can use in the right or wrong way.  
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Note that both SRT and HRT processes could coexist within the same system, even non critical 

processes without any RT constraints could be included in a design.  

Scheduling, States and Priorities 

Most RTOSs, including ChibiOS/RT, implement “fixed priority preemptive” scheduling algorithm. 

The strategy is very simple and can be described using few rules:  

• Each thread has its own priority level, priorities are fixed and do not change unless 

the system is specifically designed to do so. 

• Each active thread can be in one of the following states: 

o Running, currently being executed by a physical core. 

o Ready, ready to be executed when a physical core will become available. 

o Waiting, not ready for execution because waiting for an external event. Most 

RTOSs split this state in several sub-states but those are still waiting states. 

• Each physical core in the system always executes the highest priority thread that is 

ready for execution. 

• When a thread becomes ready and there is a lower priority thread being executed 

then preemption occurs and the higher priority thread is executed, the lower priority 

thread goes in the ready state. 

If the system has N cores the above strategy ensures that the N highest priority threads are 

being executed in any moment. Small embedded systems usually have a single core so there 

is only one running thread in any moment. 

An explanation of how priorities are organized in ChibiOS/RT can be found in the article 

”Priority Levels”.  

Interrupts handling 

An important role of an embedded RTOS is handling of interrupts. Interrupts are an 

important events source to which a system designed around an RTOS is supposed to react. 

We can classify interrupt sources in two main classes:  

• RTOS-related interrupt sources. This class of interrupts are required to interact with 

the RTOS in order to wakeup threads waiting for external events. 

• Non RTOS-related interrupt sources. Interrupt sources that do not need to interact 

with the RTOS. This class of interrupts could also be able to preempt the kernel in 

those architectures supporting maskable priority levels (ARM Cortex-M3) or 

separate interrupt lines (ARM7). 

A carefully designed RTOS should implement mechanisms efficiently handling the 

synchronization between threads and interrupt sources. Flexibility is important at this level, 

the capability to wake up single or multiple threads, synchronously or asynchronously is 

very valuable. On the other side threads should be able to wait for a single or multiple 

events. 

Usually interrupt events are abstracted in a RTOS using mechanism like semaphores, event 

flags, queues or others, there is much variability in how this is implemented by the various 

RTOSs.  
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Do I need an RTOS? 

It depends, you don't have to use an RTOS in order to design a predictable system but an 

RTOS offers you a methodology that can allow you to design a predictable system, without 

an RTOS you are basically on your own. Note that this methodology is not necessarily the 

“priority based multitasking” as implemented by ChibiOS/RT and many other RTOSs, this 

is just the most common scheme.  

You may not need extreme predictability in your system but still want to use an RTOS 

simply because it can be convenient to use compared to a bare metal system. An RTOS, 

especially one designed for embedded applications, can also offer other services like, for 

example, a stable runtime environment, device drivers, file systems, networking and other 

useful subsystems.  

What makes for a good RTOS? 

Assuming that all the candidates can be classified as RTOSs having the mentioned 

minimum requirements, then are all the other features that make the difference. Usually 

some specific features or measurable parameters are highly regarded in RTOSs.  

Response Time 

An important parameter when evaluating an RTOS is its response time. An efficient RTOS only adds 

a small overhead to the system theoretical minimal response time. Typical parameters falling in this 

category are:  

• Interrupt latency, the time from an interrupt request and the interrupt servicing. An 

RTOS can add some overhead in interrupt servicing. The overhead can be caused by 

extra code inserted by the RTOS into the interrupt handlers code paths or by RTOS-

related critical zones. 

• Threads fly-back time, the time from an hardware event, usually an interrupt, and 

the restart of the thread supposed to handle it. 

• Context switch time, the time required to synchronously switch from the context of 

one thread to the context of another thread. 

Of course an RTOS capable to react within 2µS is better than a system that reacts within 10µS. Note 

that what is really meaningful is the worst case value, if a system reacts in average in 5µS but, 

because jitter, can have spikes up to 20µS then the value to be considered is 20µS.  

Jitter 

A good RTOS is also characterized by low intrinsic jitter in response time. Intrinsic because 

jitter is also determined by the overall system design. Some factors that determine the 

system behavior regarding jitter are:  

• Thread priorities assignment. 

• Interrupt priorities assignment. 

• Length and number of critical zones. 

• Interactions between threads through shared resources protected by mutual 

exclusion. 
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• Use of priority inheritance or other jitter-reducing algorithms/strategies. 

See the article ”Response Time and Jitter”.  

Size 

In an embedded system the RTOS is an important overhead in terms of occupied memory, a more 

compact RTOS is preferable being all the other parameters equal because memory cost.  

Reliability 

There are design choices that make some systems intrinsically more reliable that others. Dynamic 

allocation is a good example of a poor design choice because both unreliability and response time 

unpredictability of some allocation schemes. Fully static designs do not have those intrinsic 

limitations.  

Synchronization Primitives 

Variety in available primitives is also an important factor to be considered. Having the correct tool 

for the job can reduce development time and often also helps when integrating external code with 

the RTOS.  

A good example is the lwIP TCP/IP stack, it assumes an RTOS offering semaphores with timeouts, if 

your RTOS does not support semaphores and timeouts then you have a problem and will have to 

find a workaround.  

 
 

Designing an embedded application 

ChibiOS/RT offers a variety of mechanisms and primitives, often it is better to focus on a 

single approach for the system design and use only part of the available subsystems. 

When designing your application you may choose among several design alternatives.  

 

Single threaded superloop 

Correct, single thread, it is not mandatory to use the multithreading features of the OS. You 

may choose to implements everything as a complex state machine handled in the main 

thread alone. In this scenario the OS still offers a variety of useful mechanisms:  

• Interrupt handling. 

• Virtual Timers, very useful in state machines in order to handle time triggered state 

transitions. 

• Power management. 

• Event Flags and/or Semaphores as communication mechanism between interrupt 

handlers and the main superloop. 

• I/O queues. 

• Memory allocation. 

• System time. 
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In this configuration the kernel size is really minimal, everything else is disabled and takes 

no space. You always have the option to use more threads at a later time in order to perform 

separate tasks.  

Message passing 

In this scenario there are multiple threads in the system that never share data, everything is 

done by exchanging messages. Each thread represents a service, the other threads can 

request the service by sending a message. 

In this scenario the following subsystems can be used:  

• Synchronous Messages. 

• Mailboxes (asynchronous message queues). 

The advantage of this approach is to not have to deal with mutual exclusion, each 

functionality is encapsulated into a server thread that sequentially serves all the requests. 

For example, you can have the following scenario:  

• A buffers allocator server. 

• A disk driver server. 

• A file system server. 

• One or more client threads. 

Example: 

Note that the threads should not exchange complex messages but just pointers to data 

structures in order to optimize the performance. Also note that a thread can be both client 

and server at the same time, the FS service in the previous scenario for example.  

Threads sharing data 

This is the most common scenario, several threads have access to both their private data and 

shared data. Synchronization happens with one of the mechanisms described in the 

”ChibiOS/RT mutual exclusion guide”.  
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Mixed 

All the above approaches can be freely mixed in a single application but usually it is 

preferred to choose a way and consistently design the system around it. The OS is a toolbox 

that offers a lot of tools but you don't have to use them all necessarily.  

 

ChibiOS/RT Kernel Concepts 

Naming Conventions 

ChibiOS/RT APIs are all named following this convention: ch<group><action><suffix>(). 

The possible groups are: Sys, Sch, Time, VT, Thd, Sem, Mtx, Cond, Evt, Msg, Reg, 

SequentialStream, IO, IQ, OQ, Dbg, Core, Heap, Pool. 

API Name Suffixes 

The suffix can be one of the following: 

• None, APIs without any suffix can be invoked only from the user code in the 

Normal state unless differently specified. See System States. 

• "I", I-Class APIs are invokable only from the I-Locked or S-Locked states. See 

System States. 

• "S", S-Class APIs are invokable only from the S-Locked state. See System States. 

Interrupt Classes 

In ChibiOS/RT there are three logical interrupt classes: 

• Regular Interrupts. Maskable interrupt sources that cannot preempt (small parts of) 

the kernel code and are thus able to invoke operating system APIs from within their 

handlers. The interrupt handlers belonging to this class must be written following 

some rules. See the system APIs group and the web article How to write interrupt 

handlers. 

• Fast Interrupts. Maskable interrupt sources with the ability to preempt the kernel 

code and thus have a lower latency and are less subject to jitter, see the web article 

Response Time and Jitter. Such sources are not supported on all the architectures. 

Fast interrupts are not allowed to invoke any operating system API from within their 

handlers. Fast interrupt sources may, however, pend a lower priority regular interrupt 

where access to the operating system is possible. 

• Non Maskable Interrupts. Non maskable interrupt sources are totally out of the 

operating system control and have the lowest latency. Such sources are not supported 

on all the architectures. 

The mapping of the above logical classes into physical interrupts priorities is, of course, port 

dependent. See the documentation of the various ports for details. 

System States 
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When using ChibiOS/RT the system can be in one of the following logical operating states: 

• Init. When the system is in this state all the maskable interrupt sources are disabled. 

In this state it is not possible to use any system API except chSysInit(). This state 

is entered after a physical reset. 

• Normal. All the interrupt sources are enabled and the system APIs are accessible, 

threads are running. 

• Suspended. In this state the fast interrupt sources are enabled but the regular 

interrupt sources are not. In this state it is not possible to use any system API except 

chSysDisable() or chSysEnable() in order to change state. 

• Disabled. When the system is in this state both the maskable regular and fast 

interrupt sources are disabled. In this state it is not possible to use any system API 

except chSysSuspend() or chSysEnable() in order to change state. 

• Sleep. Architecture-dependent low power mode, the idle thread goes in this state and 

waits for interrupts, after servicing the interrupt the Normal state is restored and the 

scheduler has a chance to reschedule. 

• S-Locked. Kernel locked and regular interrupt sources disabled. Fast interrupt 

sources are enabled. S-Class and I-Class APIs are invokable in this state. 

• I-Locked. Kernel locked and regular interrupt sources disabled. I-Class APIs are 

invokable from this state. 

• Serving Regular Interrupt. No system APIs are accessible but it is possible to 

switch to the I-Locked state using chSysLockFromIsr() and then invoke any I-

Class API. Interrupt handlers can be preemptable on some architectures thus is 

important to switch to I-Locked state before invoking system APIs. 

• Serving Fast Interrupt. System APIs are not accessible. 

• Serving Non-Maskable Interrupt. System APIs are not accessible. 

• Halted. All interrupt sources are disabled and system stopped into an infinite loop. 

This state can be reached if the debug mode is activated and an error is detected or 

after explicitly invoking chSysHalt(). 

Note that the above states are just Logical States that may have no real associated machine 

state on some architectures. The following diagram shows the possible transitions between 

the states: 
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Note, the SFI, Halted and SNMI states were not shown because those are reachable from 

most states: 

 

 
Attention: 

* except: Init, Halt, SNMI, Disabled. 

Scheduling 

The strategy is very simple the currently ready thread with the highest priority is executed. 

If more than one thread with equal priority are eligible for execution then they are executed 

in a round-robin way, the CPU time slice constant is configurable. The ready list is a double 

linked list of threads ordered by priority. 
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Note that the currently running thread is not in the ready list, the list only contains the 

threads ready to be executed but still actually waiting. 

Thread States 

The image shows how threads can change their state in ChibiOS/RT. 

 

Priority Levels 

Priorities in ChibiOS/RT are a contiguous numerical range but the initial and final values 

are not enforced. 

The following table describes the various priority boundaries (from lowest to highest): 

• IDLEPRIO, this is the lowest priority level and is reserved for the idle thread, no other 

threads should share this priority level. This is the lowest numerical value of the 

priorities space. 

• LOWPRIO, the lowest priority level that can be assigned to an user thread. 
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• NORMALPRIO, this is the central priority level for user threads. It is advisable to assign 

priorities to threads as values relative to NORMALPRIO, as example NORMALPRIO-1 

or NORMALPRIO+4, this ensures the portability of code should the numerical 

range change in future implementations. 

• HIGHPRIO, the highest priority level that can be assigned to an user thread. 

• ABSPRO, absolute maximum software priority level, it can be higher than HIGHPRIO 

but the numerical values above HIGHPRIO up to ABSPRIO (inclusive) are reserved. 

This is the highest numerical value of the priorities space. 

Thread Working Area 

Each thread has its own stack, a Thread structure and some preemption areas. All the 

structures are allocated into a "Thread Working Area", a thread private heap, usually 

statically declared in your code. Threads do not use any memory outside the allocated 

working area except when accessing static shared data. 

 

 

Note that the preemption area is only present when the thread is not running (switched out), 

the context switching is done by pushing the registers on the stack of the switched-out 

thread and popping the registers of the switched-in thread from its stack. The preemption 

area can be divided in up to three structures: 

• External Context. 

• Interrupt Stack. 

• Internal Context. 

See the port documentation for details, the area may change on the various ports and some 

structures may not be present (or be zero-sized).  
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How to create a thread 

Creating a new thread is the most common development task when using an RTOS, this is 

how it is done in ChibiOS/RT.  
 

Default Threads 

After initializing ChibiOS/RT using chSysInit() two threads are spawned by default:  

• Idle thread. This thread has the lowest priority in the system so it runs only when the other 

threads in the system are sleeping. This threads usually switches the system in a low power 

mode and does nothing else. 

• Main thread. This thread executes your main() function at startup. The main thread is 

created at the NORMALPRIO level but it can change its own priority if required. It is from 

the main thread that the other threads are usually created. 

Thread Classes 

There are two classes of threads in ChibiOS/RT:  

• Static Threads. This class of threads are statically allocated in memory at compile time. 

• Dynamic Threads. Threads created by allocating memory at run time from a memory heap 

or a memory pool. 

Creating a static thread 

In order to create a static thread a working area must be declared using the macro 

WORKING_AREA as shown:  

static WORKING_AREA(myThreadWorkingArea, 128); 

This macro reserves 128 bytes of stack for the thread and space for all the required thread 

related structures. The total size and the alignment problems are handled inside the macro, 

you only need to specify the pure and simple desired stack size.  

A static thread can be started by invoking chThdCreateStatic() as shown in this example:  

  Thread *tp = chThdCreateStatic(myThreadWorkingArea, 

                                 sizeof(myThreadWorkingArea), 

                                 NORMALPRIO,    /* Initial priority.    */ 

                                 myThread,      /* Thread function.     */ 

                                 NULL);         /* Thread parameter.    */ 

The variable tp receives a pointer to the thread object, this pointer is often taken as 

parameter by other APIs. Now a complete example:  

/* 

 * My simple application. 

 */ 

  

#include <ch.h> 
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/* 

 * Working area for the LED flashing thread. 

 */ 

static WORKING_AREA(myThreadWorkingArea, 128); 

  

/* 

 * LED flashing thread. 

 */ 

static msg_t myThread(void *arg) { 

  

  while (TRUE) { 

    LED_ON(); 

    chThdSleepMilliseconds(500); 

    LED_OFF(); 

    chThdSleepMilliseconds(500); 

  } 

} 

  

int main(int argc, char *argv[]) { 

  

  /* Starting the flashing LEDs thread.*/ 

  (void)chThdCreateStatic(myThreadWorkingArea, 

sizeof(myThreadWorkingArea), 

                          NORMALPRIO, myThread, NULL); 

  . 

  . 

  . 

} 

Note that the memory allocated to myThread() is statically defined and cannot be reused. 

Static threads are ideal for safety applications because there is no risk of a memory 

allocation failure because progressive heap fragmentation.  

Creating a dynamic thread using the heap allocator 

Creating a thread from a memory heap is very easy:  

  Thread *tp = chThdCreateFromHeap(NULL,            /* NULL = Default 

heap. */ 

                                   THD_WA_SIZE(128),/* Stack size.          

*/ 

                                   NORMALPRIO,      /* Initial priority.    

*/ 

                                   myThread,        /* Thread function.     

*/ 

                                   NULL);           /* Thread parameter.    

*/ 

The memory is allocated from the specified heap and the thread is started. Note that the 

memory is not freed when the thread terminates but when the thread final status (its return 

value) is collected by the spawning thread. For example:  

/* 

 * My simple application. 

 */ 

  

#include <ch.h> 

  

/* 

 * LED flashing thread. 
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 */ 

static msg_t myThread(void *arg) { 

  

  unsigned i = 10; 

  while (i > 0) { 

    LED_ON(); 

    chThdSleepMilliseconds(500); 

    LED_OFF(); 

    chThdSleepMilliseconds(500); 

    i--; 

  } 

  return (msg_t)i; 

} 

  

int main(int argc, char *argv[]) { 

  

  Thread *tp = chThdCreateFromHeap(NULL, THD_WA_SIZE(128), NORMALPRIO+1, 

                                   myThread, NULL); 

  if (tp == NULL) 

    chSysHalt();    /* Memory exausted. */ 

  

  /* The main thread continues its normal execution.*/ 

  . 

  . 

  /* 

   * Now waits for the spawned thread to terminate (if it has not 

terminated 

   * already) then gets the thread exit message (msg) and returns the 

   * terminated thread memory to the heap (default system heap in this 

   * example). 

   */ 

  msg_t msg = chThdWait(tp); 

  . 

  . 

} 

Creating a dynamic thread using the memory pool allocator 

A pool is a collection of equally sized memory blocks, creating a thread from a memory 

pool is very similar to the previous example but the memory of terminated threads is 

returned to the memory pool rather than to a heap:  

/* 

 * My simple application. 

 */ 

  

#include <ch.h> 

  

/* 

 * LED flashing thread. 

 */ 

static msg_t myThread(void *arg) { 

  

  unsigned i = 10; 

  while (i > 0) { 

    LED_ON(); 

    chThdSleepMilliseconds(500); 

    LED_OFF(); 

    chThdSleepMilliseconds(500); 

    i--; 

  } 

  return (msg_t)i; 

} 
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int main(int argc, char *argv[]) { 

  

  Thread *tp = chThdCreateFromMemoryPool(myPool, NORMALPRIO+1, myThread, 

NULL); 

  if (tp == NULL) 

    chSysHalt();    /* Pool empty. */ 

  

  /* The main thread continues its normal execution.*/ 

  . 

  . 

  /* 

   * Now waits for the spawned thread to terminate (if it has not 

terminated 

   * already) then gets the thread exit message (msg) and returns the 

   * terminated thread memory to the original memory pool. 

   */ 

  msg_t msg = chThdWait(tp); 

  . 

  . 

} 

 


