

A METHOD FOR FORECASTING FINANCIAL TIME SERIES BASED ON EMPIRICAL MODE DECOMPOSITION AND MANIFOLD-LEARNING

CANDIDATE AUTHOR : ANTONIO ROBERTO

UNIVERSITY OF **SALERNO**

PROF. MARIO VENTO

UNIVERSITY OF GRONINGEN

PROF. NICOLAI PETKOV

OUTLINE

PROBLEM STATEMENT

PROBLEM STATEMENT

X(k+1) = X(k) + w(k)

- Forecasting problem
- Stock market prediction is considered a challenging task of time series prediction.
- EMH^[1] states that stock market prices evolve according to a random walk and cannot be forecasted!

[1] J. Bouchaud, "The subtle nature of financial random walks", AIP, Chaos, 2005.

RELATED WORK

WHITENING & SCALING

- Machine learning techniques need large amount of examples to generalize well
- Training on samples of different stocks requires the abstraction from the specific time series
 - Whitening and scaling ^[2]
 - Non-stationarity

[2] S. F. Crone, J. Guajardo, and R. Weber, "The Impact of Preprocessing on Support Vector Regression and Neural Networks in Time Series Prediction", DMIN, 2006.

SIGNAL PROCESSING

Transformation into other domains

- Fourier and Wavelet
 - Features extraction
 - Prediction of each component
- Symbolic representation and grammatical inference [3]

[3] S. L. e. A. C. T. C. L. Giles, "Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference", Machine Learning, Kluwer Academic Publishers, vol. 44, pp. 161–183, 2001.

TWO STAGE ARCHITECTURE

[4] G. Galatro, "A kernel-based clustering approach for trends modelling in financial time series", Master's thesis, University of Salerno, Dec. 2018.

DATASET

- 13 stocks in the banking field
- Fixed feature vector

Feature Vector	(X ₋₂₀ , X ₋₁₅ , X ₋₁₀ , X ₋₅ , X ₋₁ , X ₀)
Prediction Vector	(X ₃ , X ₅ , X ₁₀ , X ₁₅ , X ₂₀)

NORMALIZATION

$$X'_{i} = \frac{X_{i} - X_{0}}{X_{i}} * 100$$

- Based on the most recent price X(0) in the features vector
- Local normalization
- Highlights patterns in terms of relative changes

EMPIRICAL MODE DECOMPOSITION

- Decomposition in IMF (Intrinsic mode functions)
 - "An IMF is a function that has only one extreme between zero crossings, along with a mean value of zero."
- Adaptive (Non-stationarity)
- Empirical

EMPIRICAL MODE DECOMPOSITION

MANIFOLD

- A manifold is a space that are locally
 Euclidean
- Samples with low
 Euclidean distance may
 be very different from
 each other

ISOMAP – GEODESIC GRAPH

- Connections
 - K-Neighbors based
 - Radius based

ISOMAP – PROJECTION

$$\Delta := \begin{pmatrix} \delta_{1,1} & \delta_{1,2} & \dots & \delta_{1,I} \\ \delta_{2,1} & \delta_{2,2} & \dots & \delta_{2,I} \\ \vdots & \vdots & & \vdots \\ \delta_{I,1} & \delta_{I,2} & \dots & \delta_{I,I} \end{pmatrix}$$

 $\min_{x_1, \dots, x_I} (||x_i - x_j|| - \delta_{i,j})^2$

- Geodesic distance matrix
 - Shortest path
- Non-linear projection
 - Multi-Dimensional Scaling

- R² related to the EMH
- K-Fold Cross Validation For Time Series
- P-Value as degree of confidence

- Normalization
 - Train of SVR on sample of each stock
 - Normalization related to S&P500
- Effect of preprocessing techniques on the two-stage architecture
 - Train on sample of different stocks

NORMALIZATION

Prediction	Normalized	Normalized with index relation	P-Value
X′ ₃	0,00137	-0,01241	0,0048
X′ ₅	0,00415	-0,03273	0,0002
X′ ₁₀	-0,01127	-0,07774	0,0002
X′ ₁₅	-0,03741	-0,11889	0,0006
X′ ₂₀	-0,04559	-0,12104	0,013

PREPROCESSING - KMEANS

PREPROCESSING - EM

STACKED SOLUTION - KMEANS

STACKED SOLUTION - EM

DISCUSSION - MANIFOLD SPACE

- The use of normalization allows to highlights trends in term of relative change which repeat over time with different absolute values for the property of nonstationarity.
- The stacked solution can increase the performance of a two-stage architecture by reducing the error contribute due to the non-stationarity of the financial time series.

CONCLUSIONS

- Positive performance respect to the baseline
- Fast development

- Fixed feature vector
- Hand-crafted features

A method for forecasting financial time series based on Empirical Mode Decomposition and Manifold-Learning

VS

LIVE DEMO

THANKS! ANY QUESTIONS?

